# Speicherung von Silan- und Germaniminen $Me_2E = NR$ (E = Si, Ge) in Form von Sila- und Germadihydrotetrazolen<sup>1)</sup>

Nils Wiberg\*, Petros Karampatses und Chung-Kyun Kim

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 9. Februar 1987

Silan- bzw. Germanimine  $Me_2E = NR(1, 2)$  [erzeugt durch Thermolyse von Sila- und Germadihydrotriazolen 3, 4; E = Si, Ge;  $R = SiMe_{\pi}tBu_{3-\pi}$ , SiPh<sub>3</sub>, EMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>] reagieren mit Azidoalkanen und -silanen  $R'N_3$  [R' = tBu, SiMe<sub>n</sub>tBu<sub>3-n</sub>, SiPh<sub>3n</sub> SiMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>] unter [2+3]-Cycloaddition, d. h. Bildung von Sila- bzw. Germadihydrotetrazolen 5, 6 (in einigen Fällen entstehen darüber hinaus Insertionsprodukte von  $Me_2E = NR$  u. a. in die R'N-Bindung der Azide). Die Sila- bzw. Germadihydrotetrazole zersetzen sich ihrerseits bei erhöhter Temperatur nach 1. Reaktionsordnung in Umkehrung ihrer Bildung unter [2+3]-Cycloreversion in Azide R'N<sub>3</sub> bzw. RN<sub>3</sub> und Imine  $Me_2E = NR$ bzw.  $Me_2E = NR'$  (Geschwindigkeitskonstanten: Tab. 1). Somit wirken Azide als Speicher für Silan- und Germanimine. Die ungesättigten Systeme entstehen nur als kurzlebige Zwischenprodukte. Ihre Stabilisierung erfolgt in der Regel durch Dimerisierung und/oder Insertion der Imine in die RN- bzw. R'N-Bindung der thermisch aus den Dihydrotetrazolen ebenfalls gebildeten Azide.

Labile Silan- bzw. Germanimine (Iminosilane bzw. -germane; Sila- bzw. Germaketimine) 1 bzw. 2 lassen sich nach unseren Ergebnissen<sup>2)</sup> unter sehr milden Bedingungen durch [2 + 3]-Cycloreversion aus Sila- bzw. Germadihydrotriazolen 3 bzw. 4 erzeugen (Gl. 1a). Zersetzt man die Silanbzw. Germanimin-Quellen 3 bzw. 4 in Anwesenheit geeigneter Reaktanden für die ungesättigten Verbindungen, so werden die reaktiven, bei Reaktandenabwesenheit sich augenblicklich dimerisierenden Silan- bzw. Germanimine unter Bildung von Folgeprodukten abgefangen<sup>2,3)</sup>. Ein Nachteil des Verfahrens zur Erzeugung von 1 bzw. 2 nach Gl. (1a) besteht aber darin, daß viele Quellen 3 und einige Quellen 4 bereits bei vergleichsweise niedrigen Temperaturen zerfallen<sup>2)</sup>; sie sind aus diesem Grunde schlecht handhabbar und



## Storage of Silan- and Germanimizes $Me_2E = NR$ (E = Si, Ge) by Way of Sila- or Germadihydrotetrazoles<sup>1)</sup>

Silan- and germanimines  $Me_2E = NR$  (1, 2) [generated by thermolysis of sila- and germadihydrotriazoles 3, 4; E = Si, Ge; R =SiMe<sub>n</sub>tBu<sub>3-n</sub>, SiPh<sub>3</sub>, EMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>] react with azidoalkanes or -silanes  $R'N_3$  [R' = tBu, SiMe<sub>n</sub>tBu<sub>3-n</sub>, SiPh<sub>3</sub>, SiMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>] by [2+3] cycloaddition to form sila- or germatetrazoles 5, 6 (in addition, insertion products of  $Me_2E = NR$  in the R'N bond of the azides and others are formed in some cases). The sila- or germadihydrotetrazoles decompose at raised temperatures in a first-order reaction, reversing their formation by [2+3] cycloreversion into azides  $R'N_3$  or  $RN_3$  and imines  $Me_2E = NR$  or  $Me_2E = NR'$  (rate constants: Table 1). Consequently, azides operate as stores for silan- and germanimines. The unsaturated systems are formed only as short-lived intermediates. Their stabilization, as a rule, takes place by dimerization and/or insertion of the imines into the RN or R'N bond of the azides, formed as well by thermolysis of dihydrotetrazoles.

einer Reihe von 1- bzw. 2-Fängern schwer vermittelbar. Wir haben deshalb – wie auch im Falle der Silaethene<sup>4)</sup> – nach Möglichkeiten gesucht, die erzeugten ungesättigten Systeme 1 bzw. 2 in Form von Produkten zu speichern, welche 1 bzw. 2 bei leicht erhöhter Temperatur wieder reversibel abzugeben imstande sind. Derartige "Speicher" wurden in Aziden R'N<sub>3</sub> (Bildung von Sila- und Germadihydrotetrazolen 5 und 6, Gl. 1b) sowie in Aminen NR<sub>3</sub> (Bildung von Silanund Germanimin-Aminaddukten 7 und 8, Gl. 1c) aufgefunden. Über Darstellung, Charakterisierung und Thermolyse von 5 und 6 wird nachfolgend, über Addukte 7 und 8 in einer weiteren Publikation<sup>3)</sup> berichtet.

# Darstellung und Charakterisierung einiger Sila- und Germadihydrotetrazole

Die als 1- bzw. 2-Quellen wirkenden Sila- bzw. Germadihydrotetrazole 5 bzw. 6 entstehen bei der Thermolyse von Sila- bzw. Germadihydrotriazolen 3 bzw. 4 in Anwesenheit von Aziden R'N<sub>3</sub> gemäß Gl. (1a,b), wobei sich die Edukte 3 bzw. 4 ihrerseits nach Gl. (2a)<sup>2</sup> bei -78 °C bzw. nach Gl. (2b)<sup>4,6</sup> bei erhöhter Temperatur gewinnen lassen. Darüber hinaus können Sila- bzw. Germadihydrotetrazole 5 bzw. 6 in Anwesenheit von R'N<sub>3</sub> in einigen Fällen thermisch gemäß Gl. (1b) (Rück-, Hinreaktion) in andere Dihydrotetrazole des Typs 5 bzw. 6 umgewandelt werden<sup>7</sup>. Tropft man dementsprechend zu gekühlten Lösungen von 9 und RN<sub>3</sub> BuLi in Hexan (Verfahren I) bzw. thermolysiert man Lösungen von 10 und RN<sub>3</sub> (Verfahren II) oder Lösungen von

5, 6 und R'N<sub>3</sub> (Verfahren III) oder Lösungen von 3, 4 und R'N<sub>3</sub> (Verfahren IV) bei ausreichend hohen Temperaturen [Solvenzien:  $Et_2O$ ,  $C_6H_6$ ; Molverhältnis RN<sub>3</sub> (R'N<sub>3</sub>) zu Edukt: >2 (I, II), >1 (III, IV)], so bilden sich Sila- und Germadihydrotetrazole 5 bzw. 6 in den nachfolgend wiedergegebenen Ausbeuten:

| Nr. (Tab. 1)              | 5a       | b         | c          | d        | e  | f         | g       | h         |
|---------------------------|----------|-----------|------------|----------|----|-----------|---------|-----------|
| Darstellung <sup>a)</sup> | 11       | I         | I          | 11       | 11 | I         | 1V      | IV        |
| % 5                       | 15       | 55        | 100        | 100      | 85 | 70        | 50      | . 25      |
| Nr. (Tab. 1)              | 5i       | k, m      | l, n       | 6a       | ļ  | b, c      | d       | e-k       |
| Darstellung <sup>a)</sup> | IV<br>25 | IV<br>100 | III<br>100 | IV<br>30 | ]  | [V<br>100 | I<br>45 | IV<br>100 |
| 70 3 UZW. 0               | 20       | 100       | 100        | . 50     |    | 100       | 75      | 100       |

<sup>a)</sup> I: Gl. (2a), (1a), (1b); II: Gl. (2b), (1a), (1b); III: Gl. (1b); IV: Gl. (1a), (1b).

Sind die Vorstufen 3 bzw. 4 der Sila- und Germadihydrotetrazole 5 bzw. 6 bereits unterhalb Raumtemperatur zersetzlich<sup>2)</sup>, so nutzt man – sofern R = R' – bei gut (schlecht) cycloaddierenden Silanund Germaniminen das Verfahren I (II). Andernfalls sind die Verfahren III bzw. IV empfehlenswert oder – sofern R  $\neq$  R' – unumgänglich<sup>8)</sup>.



Daß die Ausbeuten der nach Verfahren I–IV synthetisierten Sila- und Germadihydrotetrazole nicht quantitativ sind<sup>9</sup>, hat insbesondere zwei Gründe<sup>12)</sup>: 1) Die thermische Zersetzung von 3 in Et<sub>2</sub>O erfolgt in einigen Fällen [R = SiMe<sub>3</sub>, SiMe<sub>2</sub>tBu, SiPh<sub>3</sub>, SiMe<sub>2</sub>-N(SiMe<sub>3</sub>)<sub>2</sub>] nicht ausschließlich gemäß Gl. (3b) unter [2 + 3]-Cycloreversion zu (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub> und – ihrerseits nach Gl. (3d) mit R'N<sub>3</sub> unter Bildung von 5 weiterreagierenden – Silaniminen Me<sub>2</sub>-Si = NR, sondern darüber hinaus gemäß Gl. (3a) unter Isomerisierung zu Produkten 11 [Cycloreversionsausbeuten für 3, R = SiMe<sub>3</sub>: 50% bei –10°C, 70% bei 80°C; SiMe<sub>2</sub>tBu: 55% bei –10°C; SiPh<sub>3</sub>: 25% bei –70°C, 85% bei 100°C; SiMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>: 70% bei

Tab. 1. Kenndaten und Thermolysekinetiken einiger Sila- und Germadihydrotetrazole 5 und 6

| M<br>E            | le 2     |                                            | Schmp. <sup>a)</sup>                        | 1 <sub>H</sub> | -NMR <sup>c,d)</sup> |             |                    | Thermolysekinetik |                                         |             |
|-------------------|----------|--------------------------------------------|---------------------------------------------|----------------|----------------------|-------------|--------------------|-------------------|-----------------------------------------|-------------|
| RN N=             | NR'<br>E | R<br>R'                                    | (Zers. <sup>b)</sup> )<br>[ <sup>o</sup> C] |                | EMe 2                | R           | R'                 | т<br>[°с]         | 10 <sup>4</sup> k<br>[s <sup>-1</sup> ] | т½<br>[min] |
| 5ª <sup>10)</sup> | Si       | SiMe <sub>3</sub>                          | 89                                          | Е              | 0.273                | 0.257       | 0.257              | E 135             | 2.24                                    | 52          |
|                   |          |                                            | (130)                                       | в              | 0.140                | 0.245       | 0.245              | в 130             | 1.74                                    | 66          |
| 5b                | •        | SiMe_tBu                                   | 72                                          | Е              | 0.298                | 0.228/0.952 | 0.228/0.952        | E 130             | 3.45 <sup>e)</sup>                      | 33          |
| ==                |          | "                                          | (>150)                                      | в              | 0.203                | 0.194/0.998 | 0.194/0.998        | B 130             | 4.12 <sup>e)</sup>                      | 28          |
| 5 <u>c</u>        |          | SiMetBu <sub>2</sub>                       | 162                                         | Е              | 0.322                | 0.181/1.05  | 0.181/1.05         | E 130             | 3.19 <sup>e)</sup>                      | 30          |
|                   |          | "                                          | (>160)                                      | в              | 0.236                | 0.051/1.08  | 0.051/1.08         | B 130             | 4.53 <sup>e)</sup>                      | 26          |
| 5d                |          | SitBu                                      | 132                                         | Ē              | 0.608                | 1.21        | 1.21               | E 101             | 2.38 <sup>e)</sup>                      | 49          |
| ΞΞ                |          | "                                          | (>140)                                      | в              | 0.556                | 1.24        | 1.24 <sup>f)</sup> | в 101             | 3.45 <sup>e)</sup>                      | 33          |
| 5 <u>e</u>        |          | SiPh,                                      | 224                                         | т              | 0.038                | m           | m                  |                   |                                         |             |
|                   |          | "                                          | (>224)                                      | в              | 0.154                | m           | m                  |                   |                                         |             |
| ₹ŧ                |          | SiMe2 <sup>R',g)</sup>                     | h)                                          | Е              | 0.379                | 0.333/0.228 | 0.333/0.228        |                   |                                         |             |
| 5g                |          | SiMe                                       | 68                                          | т              | 0.257                | 0.173       | 1.29               |                   |                                         |             |
|                   |          | <u>t</u> Bu                                | (>160)                                      | в              | 0.324                | 0.252       | 1.37               |                   |                                         |             |
| ∑₽                |          | SiPh <sub>3</sub>                          | h)                                          | Е              | -0.028               | m           | 1.37               |                   |                                         |             |
|                   |          | <u>t</u> Bu                                | (>160)                                      | в              | -0.031               | m           | 1.30               |                   |                                         |             |
| ≨i                |          | SiMe <sub>2</sub> ±Bu<br>SiMe <sub>3</sub> | h)<br>(>170)                                | Е              | 0.260                | 0.277/2.07  | 0.217              |                   |                                         |             |
| <u>5k</u>         |          | SiMetBu                                    | 70                                          | Е              | 0.298                | 0.168/verd. | 0.263              |                   |                                         |             |
|                   |          | SiMe <sub>3</sub>                          | (>140)                                      | в              | 0.198                | 0.036/1.09  | 0.247              |                   |                                         |             |
| 51                |          | Si <u>t</u> Bu <sub>3</sub>                | 76                                          | т              | 0.401                | 1.16        | 0.282              |                   |                                         |             |
|                   |          | SiMe3                                      |                                             | в              | 0.337                | 1.21        | 0.242              |                   |                                         |             |
| <u>5</u> m        |          | SiMetBu2                                   | 106                                         | É              | 0.236                | 0.176/verd. | 0.309/0.954        |                   |                                         |             |
|                   |          | SiMe2±Bu                                   | (>160)                                      | в              | 0.200                | 0.040/1.09  | 0.222/0.998        |                   |                                         |             |
| ≨n                |          | Si <u>t</u> Bu <sub>3</sub>                | 107                                         | т              | 0.412                | 1.17        | 0.166/1.03         |                   |                                         |             |
|                   |          | SiMetBu <sub>2</sub>                       |                                             | в              | 0,382                | 1.21        | 0.069/1.08         |                   |                                         |             |

Tab. 1 (Fortsetzung)

|                  | Me2      |                                          | Schmp. <sup>a)</sup>                        | 1 <sub>H</sub> | HNMR <sup>c,d)</sup> |                            |                            | Thermo                  | olysekinet                              | ik <sup>C)</sup> |
|------------------|----------|------------------------------------------|---------------------------------------------|----------------|----------------------|----------------------------|----------------------------|-------------------------|-----------------------------------------|------------------|
| RN<br>Nr.        | N=N<br>E | R<br>R'                                  | (Zers. <sup>b)</sup> )<br>[ <sup>o</sup> C] |                | EMe2                 | R                          | R'                         | .т<br>[ <sup>о</sup> с] | 10 <sup>4</sup> k<br>[s <sup>-1</sup> ] | τ½<br>[min]      |
| <u>6</u> a       | Ge       | SiMe <sub>3</sub>                        | 112<br>(110)                                | E<br>B         | 0.539                | 0.239                      | 0.239                      | в 120                   | 3.30 <sup>i)</sup>                      | 35               |
| <u>6</u> ₽       |          | SiMe2 <sup>tBu</sup>                     | 103<br>(>130)                               | E<br>B         | 0.533<br>0.421       | 0.199/0.949                | 0.199/0.949                | B 125                   | 17.9 <sup>i)</sup>                      | 6.4              |
| §⊊               |          | SiMe <u>t</u> Bu <sub>2</sub><br>"       | 152<br>(>140)                               | E<br>B         | 0.380<br>0.410       | 0.000/1.09<br>-0.004/1.10  | 0.000/1.09                 | B 140                   | 23.3 <sup>i)</sup>                      | 5.0              |
| §₫ <sup>g)</sup> |          | Si <u>t</u> Bu <sub>3</sub>              | 132<br>(>120)                               | E<br>B         | 0.838<br>0.708       | 1.19<br>1.23               | 1.19<br>1.23               |                         |                                         |                  |
| <u>6</u> e       |          | SiPh <sub>3</sub>                        | 157                                         | E<br>B         | -0.143<br>-0.153     | m<br>m                     | m<br>m                     |                         |                                         |                  |
| ₫£               |          | SiMe <sub>2</sub> R'' <sup>g)</sup><br>" | 54<br>(95)                                  | E<br>B         | 0.604<br>0.483       | 0.363/0.223<br>0.377/0.271 | 0.363/0.223<br>0.377/0.271 | B 110                   | 5.80 <sup>i)</sup>                      | 20               |
| ēg               |          | SiMe <sub>3</sub><br><u>t</u> Bu         | 71<br>(>71)                                 | E<br>B         | 0.486<br>0.344       | 0.219<br>0.266             | 1.35<br>1.29               |                         |                                         |                  |
| ĕ₽               |          | SiMe2 <sup>tBu</sup><br>tBu              | 59                                          | E<br>B         | 0.616<br>0.382       | 1.36<br>1.28               | 0.094/verd.<br>0.192/1.03  |                         |                                         |                  |
| <u>61</u>        |          | SiMe <u>t</u> Bu<br><u>t</u> Bu          | 72                                          | E<br>B         | 0.528<br>0.408       | 0.022/verd.<br>-0.016/1.12 | 1.35<br>1.28               |                         |                                         |                  |
| ₫¥               |          | GeMe2 <sup>R',g)</sup><br><u>t</u> Bu    | 91                                          | E<br>B         | 0.612<br>0.459       | 0.656/0.181<br>0.627/0.239 | 1.35<br>1.32               |                         |                                         |                  |

<sup>a)</sup> Die Verbindungen schmelzen zum Teil unter Zersetzung. – <sup>b)</sup> Die Zersetzungstemperaturen beziehen sich auf verdünnte etherische Lösungen;  $\tau_{1/2}$  ca. 1 h (Zersetzungshalbwertszeiten ohne Fänger für 1, 2 aus 5, 6 sind länger als mit Fänger, vgl. Thermolysckinetiken). – <sup>c)</sup> Solvenzien: E = Et<sub>2</sub>O, B = C<sub>6</sub>H<sub>6</sub>, T = CCl<sub>4</sub>. – <sup>d)</sup> Singuletts, wenn nicht anders vermerkt (m = Aromaten-Multiplett). – <sup>e)</sup> In Anwesenheit von Mc<sub>2</sub>C=O als 1-Fänger. – <sup>n 29</sup>Si-NMR (C<sub>6</sub>H<sub>6</sub>) von 5d:  $\delta = 1.92$  (s, SiMe<sub>2</sub>), 9.49 (s, SitBu<sub>3</sub>); 5e:  $\delta = -4.15$  (s, SiMe<sub>2</sub>), -20.84 (s, SiPh<sub>3</sub>). – <sup>s)</sup> R<sup>"</sup> = N(SiMe<sub>3</sub>)<sub>2</sub>. – <sup>h)</sup> Nicht isoliert. – <sup>i)</sup> In Anwesenheit von Ph<sub>2</sub>C=NSiMe<sub>3</sub> als 2-Fänger. Die Thermolyse von 6a bei 120 °C erfolgt ohne Fänger mit gleicher Geschwindigkeit:  $k = 3.59 \times 10^{-4}$  s<sup>-1</sup>,  $\tau_{1/2} = 32$  min.



 $-10^{\circ}$ C]<sup>2)</sup>. 2) Die intermediär nach Gl. (3b) gebildeten Imine Me<sub>2</sub>-Si = NSiMe<sub>3</sub>, Me<sub>2</sub>Si = NSiMe<sub>2</sub>tBu bzw. Me<sub>2</sub>Ge = NSiMe<sub>3</sub> bilden nicht ausschließlich gemäß Gl. (3d) [2 + 3]-Cycloaddukte 5 bzw. 6 mit Me<sub>3</sub>SiN<sub>3</sub>, sondern darüber hinaus gemäß Gl. (3c) Insertions-produkte 12 bzw. 13 in die SiN-Bindung von Me<sub>3</sub>SiN<sub>3</sub>; zusätzlich entstehen im Falle von Me<sub>2</sub>E = NSiMe<sub>3</sub> (E = Si, Ge) gemäß Gl. (3c) Insertionsprodukte 14 bzw. 15 in die SiN-Bindung der betreffenden Silan- bzw. Germanimin-Quellen 3 bzw. 4<sup>2)</sup> (Cycloadditionsausbeuten für Me<sub>2</sub>Si = NSiMe<sub>3</sub> in Et<sub>2</sub>O: 0% bei  $-10^{\circ}$ C, 20% bei  $80^{\circ}$ C<sup>2</sup>; für Me<sub>2</sub>Si = NSiMe<sub>2</sub>tBu in Et<sub>2</sub>O: 45% bei  $-10^{\circ}$ C; für Me<sub>2</sub>Ge = NSiMe<sub>3</sub> in C<sub>6</sub>H<sub>6</sub><sup>13</sup>: 30% bei 70^{\circ}C).

In Tab. 1 sind die von uns synthetisierten Sila- und Germadihydrotetrazole 5 und 6 zusammen mit einigen Kenndaten aufgeführt. Es handelt sich um farblose<sup>14</sup>, kristalline, in organischen Medien lösliche, bei Raumtemperatur metastabile Verbindungen, die sich bei erhöhten Temperaturen (meist > 100 °C) in der nachfolgend geschilderten Weise zersetzen.

### Thermolyse von Sila- und Germadihydrotetrazolen

Die nach Gl. (1b) durch [2 + 3]-Cycloaddition aus Aziden RN<sub>3</sub> und Silan- bzw. Germaniminen Me<sub>2</sub>E = NR (1, 2) synthetisierten gleichartig silylsubstituierten Sila- und Germa-

dihydrotetrazole 5 bzw. 6 (R = R' = Silyl) zersetzen sich thermisch in Umkehrung ihrer Synthese unter [2 + 3]-Cycloreversion gemäß Gl. (4a) in RN<sub>3</sub> und kurzlebige Imine 1 bzw. 2. Hinsichtlich der ungesättigten Systeme 1 bzw. 2 können somit Azide als Speicher wirken. Die in kleiner Gleichgewichtskonzentration aus 5 bzw. 6 freigesetzten Systeme 1 bzw. 2 stabilisieren sich ihrerseits durch einmalige (bzw. im Falle von Me<sub>2</sub>Ge = NSiMe<sub>3</sub> auch zweimalige) Insertion in die RN-Bindung der Azide (Gl. 4b; Bildung von 12, 13, 16), durch Dimerisierung (Gl. 4c; Bildung von 17, 18) sowie auf andere, bisher ungeklärte Weise (die Prozentangaben in Gl. 4 beziehen sich auf Thermolysen von 5 und 6 in C<sub>6</sub>H<sub>6</sub>).

Für die intermediäre Bildung von 1 und 2 im Zuge des thermischen Zerfalls von 5 und 6 gemäß Gl. (4) spricht u. a. der Befund, daß sich 1b, c (aus 5) durch En-Reaktionen mit Aceton Me<sub>2</sub>C=O (Gl. 5, E = Si) bzw. 2a-c, f (aus 6) durch Insertions-Reaktionen mit *N*-(Trimethylsilyl)benzophenonimin Ph<sub>2</sub>C=NSiMe<sub>3</sub> (Gl. 5, E = Ge) quantitativ in *Abfangprodukte* überführen lassen<sup>15)</sup> (Bildung von 19 bzw. 20; vollständige Unterdrückung der Bildung von 12, 13, 16–18 sowie anderen Folgeprodukten aus 1 und 2; für weitere Abfangreaktionen von 1, 2 vgl. Lit.<sup>3</sup>).

Für den postulierten Reaktionsmechanismus (Gl. 4) spricht darüber hinaus, daß die Thermolysen von 5 bzw. 6 in Anwesenheit guter Fänger für 1 bzw. 2 wie Me<sub>2</sub>C=O oder Ph<sub>2</sub>C=NSiMe<sub>3</sub> Geschwindigkeitsgesetzen *1. Reaktionsordnung* folgen<sup>17)</sup> (Geschwindigkeitskonstanten k und Halbwertszeiten  $\tau_{1/2}$  vgl. Tab. 1)<sup>18)</sup>. Somit entstehen also die Produkte 19 bzw. 20 nicht durch bimolekulare Reaktionen.

In Abwesenheit von Fängern nehmen die Geschwindigkeitskonstanten k (Halbwertszeiten  $\tau_{1/2}$ ) ganz im Sinne des Mechanismus Gl. (4) mit wachsendem Reaktionsausmaß ab (zu); denn das aus den Dihydrotetrazolen 5 bzw. 6 neben 1 bzw. 2 gebildete Azid RN<sub>3</sub> kann seinerseits mit den Silan- bzw. Germaniminen unter Rückbildung von 5 bzw. 6 reagieren, wodurch sich das Gleichgewicht mit fortschreitender Reaktion, d. h. steigender Azidmenge, zunehmend zur Dihydrotetrazolseite hin verschiebt. Die in Tab. 1 wiedergegebenen Temperaturen der Zersetzung von 5 bzw. 6 in Ab-



wesenheit von Fängern sind aus diesem Grunde viel höher als die aus Kinetiken der Thermolysen von 5 bzw. 6 in Anwesenheit solcher Fänger folgenden Temperaturen (jeweils  $\tau_{1/2}$  ca. 1 h).

Die ungleichartig silylsubstituierten Sila- und Germadihydrotetrazole 5 bzw. 6 (R  $\pm$  R'; R,R' = Silyl) können thermisch sowohl gemäß Gl. (6a) als auch Gl. (6b) unter [2 + 3]-Cycloreversion in Silan- bzw. Germanimine und Azide zerfallen<sup>19)</sup>. Der prozentuale Anteil beider Cycloreversionen an der Gesamtthermolyse läßt sich durch Abfangen der gebildeten Silan- und Germanimine mit geeigneten Reaktanden sichtbar machen. Zersetzt man etwa Siladihydrotetrazole 5 mit R/R' = SiMe<sub>3</sub>/SiMetBu<sub>2</sub> (5k), SiMe<sub>3</sub>/SitBu<sub>3</sub> (5l), Si-Me<sub>2</sub>tBu/SiMetBu<sub>2</sub> (5m) bzw. SiMetBu<sub>2</sub>/SitBu<sub>3</sub> (5n) in Anwesenheit von Aceton, so bilden sich nach Gl. (5) En-Reaktionsprodukte 19c, d, c bzw. d von Aceton mit den nach Gl. (6b) gebildeten Silaniminen in 77-, 100-, 50- bzw. 100proz. Ausbeute [Spaltung nach Gl. (6a) in 23-, 0-, 50bzw. 0proz. Ausbeute].

Hiernach erfolgt — in Übereinstimmung mit Ergebnissen der Thermolyse gleichartig silylsubstituierter Dihydrotetrazole 5 bzw. 6 ( $\mathbf{R} = \mathbf{R}'$ )<sup>18)</sup> — die Bildung von Silaniminen aus ungleichartig substituierten Dihydrotetrazolen 5 bzw. 6



 $(R \neq R')$  in der Reihenfolge Me<sub>2</sub>Si = NSiMe<sub>3</sub> < Me<sub>2</sub>-Si = NSiMe<sub>2</sub>tBu  $\approx$  Me<sub>2</sub>Si = NSiMetBu<sub>2</sub> < Me<sub>2</sub>Si = NSitBu<sub>3</sub> zunehmend leichter, was wachsende Stabilität der ungesättigten Systeme in gleicher Richtung möglich erscheinen läßt (Entsprechendes gilt wohl für Germanimine<sup>18</sup>).

 $\{Me_2E=NR\} \xrightarrow{(a)} -R'N_3 \xrightarrow{(b)} N=N \xrightarrow{(b)} -RN_3 \xrightarrow{(b)}$ 

In Abwesenheit von Fremdfängern kann das nach Gl. (6) aus 5 bzw. 6 (R  $\neq$  R') gebildete Azid als Eigenfänger für die neben den Aziden entstehenden Silan- und Germanimine wirken, wodurch neue [2 + 3]-Cycloaddukte mit den Aziden oder Insertionsprodukte der Imine in die SiN-Bindung der Azide erhalten werden. So zersetzen sich etwa die Siladihydrotetrazole 5 mit R/R' = SiMe<sub>2</sub>tBu/SiMetBu<sub>2</sub> (5m) bzw. SiMe<sub>3</sub>/SiMe<sub>2</sub>tBu (5i) quantitativ gemäß Gl. (7) und (8) unter Bildung der [2 + 3]-Cycloaddukte 5b und 5c von Me<sub>2</sub>Si = NSiMe<sub>2</sub>tBu/tBuMe<sub>2</sub>SiN<sub>3</sub> und Me<sub>2</sub>Si = NSiMetBu<sub>2</sub>/ tBu<sub>2</sub>MeSiN<sub>3</sub> bzw. unter Bildung des Insertionsprodukts 21 von Me<sub>2</sub>Si = NSiMe<sub>2</sub>tBu/Me<sub>3</sub>SiN<sub>3</sub> (vgl. hierzu auch Bildung von 5l aus 5d/Me<sub>3</sub>SiN<sub>3</sub> bzw. von 5n aus 5d/tBuMe<sub>2</sub>SiN<sub>3</sub> nach Verfahren III).



Der Verlauf der Reaktionen Gl. (7) und (8) deutet auf eine Spaltung von 5m in 50% Me<sub>2</sub>Si = NSiMe<sub>2</sub> $tBu/tBu_2MeSiN_3$  (Gl. 6a) und 50%  $Me_2Si = NSiMetBu_2/tBuMe_2SiN_3$  (Gl. 6b) bzw. auf eine Spaltung von 5i in 100%  $Me_2Si = NSiMe_2tBu/Me_3SiN_3$  (Gl. 6a)<sup>15)</sup>. Allerdings kann aus der Art der bei Thermolysen von 5, 6 ( $R \neq R'$ ) in Anwesenheit von Aziden gebildeten Produkte nicht sicher auf die primären prozentualen [2 + 3]-Cycloreversionsanteile (a) und (b) an der Dihydrotetrazol-Gesamtthermolyse (Gl. 6) zurückgeschlossen werden; denn die [2 + 3]-Cycloreversionsprozesse sind reversibel, womit sich letztendlich auch die weniger bevorzugte [2+3]-Cycloreversion durchsetzt, sofern ein Produkt letzteren Prozesses besonders rasch abgefangen wird. Dementsprechend bildet sich etwa im Falle der Thermolyse von 5 mit  $R/R' = SiMe_3/$ SiMetBu<sub>2</sub> (5k) in Anwesenheit des sehr guten Fängers Me<sub>3</sub>SiN<sub>3</sub> ausschließlich das Insertionsprodukt (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> (12a) von  $Me_2Si = NSiMe_3$  in die SiN-Bindung von  $Me_3SiN_3$  neben tBu<sub>2</sub>MeSiN<sub>3</sub>, obwohl 5k bevorzugt unter Bildung von Me<sub>2</sub>- $Si = NSiMetBu_2$  und  $Me_3SiN_3$  zerfällt (s. oben, Thermolyse von 5k in Anwesenheit von Aceton); doch fängt Me<sub>3</sub>SiN<sub>3</sub> das Silanimin  $Me_2Si = NSiMe_3$  we sentlich rascher ab als das Imin  $Me_2$ - $Si = NSiMetBu_2$ .

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung der Untersuchungen mit Personal- und Sachmitteln.

#### **Experimenteller** Teil

Alle Untersuchungen wurden unter Ausschluß von Wasser und Luft durchgeführt. Nach Literaturvorschriften wurden dargestellt:  $Me_2SiBr - CBr(SiMe_3)_{2}^{20}$ ,  $Me_2GeBr - CBr(SiMe_3)_{2}^{21}$ ,  $Me_3SiN_{3}^{22}$ ,  $tBuMe_2SiN_{3}^{23}$ ,  $tBu_2MeSiN_{3}^{6}$ ,  $tBu_3SiN_{3}^{24}$ ,  $tBuN_{3}^{26}$ ,  $10^{4.6}$ ,  $Ph_{2}$ -CNSiMe<sub>3</sub><sup>27</sup>), (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>ECl [E = Si, Ge; hieraus (Me<sub>3</sub>Si)<sub>2</sub>-NMe<sub>2</sub>EN<sub>3</sub>, Charakterisierung vgl. Thermolysen von **5a** bzw. **6a**]<sup>22,25</sup>.

NMR-Spektren: Jeol FX 90 Q, internes TMS. – Molekülmassen sowie Zusammensetzung der isolierten Verbindungen wurden anhand der M<sup>+</sup>-Peaks sowie deren Isotopenmuster massenspektrometrisch (Varian CH 7) überprüft. – IR-Spektren: Perkin-Elmer 325. – UV-Spektren: Zeiss DMR 10.

Darstellung von 5b, 5c, 5f, 6d (Verfahren I): Zu einer Lösung von 4.0 mmol Me<sub>2</sub>SiBr – CBr(SiMe<sub>3</sub>)<sub>2</sub> und 8.2 mmol tBuMe<sub>2</sub>SiN<sub>3</sub> (A) bzw. tBu<sub>2</sub>MeSiN<sub>3</sub> (B) bzw. (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> (C) in 50 ml Et<sub>2</sub>O bei – 78 °C bzw. von 4.0 mmol Me<sub>2</sub>GeBr – CBr(SiMe<sub>3</sub>)<sub>2</sub> und 8.2 mmol tBu<sub>3</sub>SiN<sub>3</sub> (D) in 50 ml Et<sub>2</sub>O bei – 10 °C werden 4.0 mmol BuLi in Hexan getropft. Nach Erwärmen auf Raumtemp. enthalten die Reaktionslösungen – laut <sup>1</sup>H-NMR – (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub><sup>28)</sup> sowie zusätzlich im Falle (A) 55% 5b neben 45% [(tBuMe<sub>2</sub>Si)(Me<sub>3</sub>Si)-NMe<sub>2</sub>Si](Me<sub>3</sub>Si)C = N = N<sup>2)</sup> bzw. im Falle (B) 100% 5c bzw. im Falle (C) 70% 5f neben 30% {[(Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si}-(Me<sub>3</sub>Si)C = N = N<sup>2)</sup> bzw. im Falle (D) 45% 6d neben 55% Me<sub>2</sub>-GeBu – CBr(SiMe<sub>3</sub>)<sub>2</sub><sup>21)</sup>.

Man destilliert das Solvens zusammen mit gebildetem (Me<sub>3</sub>Si)<sub>2</sub>-CN<sub>2</sub> und überschüssigem Azid bis 50°C im Ölpumpenvak. ab, nimmt die Rückstände in 20 ml Pentan auf, filtriert unlösliches LiBr ab und kristallisiert aus der Pentanlösung bei -78 °C im Falle von (A) 1,4-Bis(tert-butyldimethylsilyl)-5,5-dimethyl-1,2,3,4-tetraaza-5sila-2-cyclopenten (5b, 18%), im Falle von (B) 1,4-Bis(di-tert-butylmethylsilyl)-5,5-dimethyl-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5c, 90%), im Falle von (C) 1,4-Bis {[bis(trimethylsilyl)amino]dimethylsilyl }-5,5-dimethyl-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5f) zusammen mit {[(Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si}(Me<sub>3</sub>Si)CN<sub>2</sub> (11, R = SiMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>)<sup>2)</sup>, im Falle von (D) 5,5-Dimethyl-1,4-bis(tri-tertbutylsilyl)-1,2,3,4-tetraaza-5-germa-2-cyclopenten (6d, 34%). -Analysen: Tab. 1, 2. – Charakterisierung, Anmerkungen: 1) Zutropfen von BuLi/Hexan zu  $Me_2SiBr - CBr(SiMe_3)_2/$  $2tBu_3SiN_3$  in Et<sub>2</sub>O bei -78 bzw. -30 °C führt - laut <sup>1</sup>H-NMR nicht bzw. nur teilweise zu 5d [zusätzliche Produkte durch Reaktion von  $Me_2Si = C(SiMe_3)_2$  mit BuLi,  $Me_2Si = C(SiMe_3)_2$  sowie (bei  $-30^{\circ}$ C) Me<sub>2</sub>Si = NSitBu<sub>3</sub>; vgl. Lit.<sup>2</sup>]. 2) Zutropfen von BuLi/Hexan zu Me<sub>2</sub>SiBr – CBr(SiMe<sub>3</sub>)<sub>2</sub>/2 Ph<sub>3</sub>SiN<sub>3</sub> in Et<sub>2</sub>O bei – 78°C führt – laut <sup>1</sup>H-NMR – nicht zu 5e, sondern nur zu den normalen Thermolyseprodukten von 3 ( $\mathbf{R} = \text{SiPh}_3$ ), vgl. Lit.<sup>2</sup>).

Darstellung von 5a, 5d, 5e (Verfahren II): 4.0 mmol 10a und 40 mmol Me<sub>3</sub>SiN<sub>3</sub> (A) bzw. 8.1 mmol tBu<sub>3</sub>SiN<sub>3</sub> (B) bzw. 8.1 mmol Ph<sub>3</sub>SiN<sub>3</sub> (C) in 50 ml Et<sub>2</sub>O werden in evakuierten, abgeschlossenen Bombenrohren 3 h (A) bzw. 6 h (B, C) auf 100°C erhitzt. Laut <sup>1</sup>H-NMR-Spektren bilden sich  $Ph_2C = NSiMe_3^{4}$ ,  $(Me_3Si)_2CN_2^{28}$  sowie zusätzlich im Falle (A) ca. 15% 5a neben 20% [(Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>Si]- $(Me_3Si)CN_2$  und 65%  $(Me_3Si)_2NMe_2SiN_3^{(2)}$  bzw. im Falle (B) 100% 5d bzw. im Falle (C) 85% 5e neben 15% [(Ph<sub>3</sub>Si)(Me<sub>3</sub>Si)NMe<sub>2</sub>Si]-(Me<sub>3</sub>Si)CN<sub>2</sub><sup>2)</sup>. Bezüglich der Isolierung von 5,5-Dimethyl-1,4-bis-(trimethylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5a) im Gemisch mit [(Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>Si](Me<sub>3</sub>Si)CN<sub>2</sub> und (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> (A) vgl. Lit.<sup>2</sup>, bezüglich Charakterisierung und Analysen Tab. 1 sowie Lit.<sup>10)</sup>. Zur Isolierung von 5d (B) und 5e (C) destilliert man das Solvens zusammen mit gebildetem (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub>, Ph<sub>2</sub>CNSiMe<sub>3</sub> und überschüssigem Azid bis 50°C im Hochvak. ab, nimmt die Rückstände in Et<sub>2</sub>O auf und kristallisiert 5,5-Dimethyl-1,4-bis(tri-tert-

Tab. 2. Analysenwerte (Molekülmassen, massenspektrometrisch belegt)

| Nr.          | Summenformel                                                     | Mr    |        | Ber.  |       | Gef.  |       |       |  |
|--------------|------------------------------------------------------------------|-------|--------|-------|-------|-------|-------|-------|--|
|              |                                                                  |       | с      | н     | N     | с     | н     | N     |  |
| ≦₽           | C <sub>14</sub> H <sub>36</sub> N <sub>4</sub> Si <sub>3</sub>   | 344.7 | 48.78  | 10.53 | 16.25 | 46.84 | 9.69  | 16.10 |  |
| ٥ç           | C20 <sup>H</sup> 48 <sup>N</sup> 4 <sup>Si</sup> 3               | 428.9 | 56.01  | 11.20 | 13.06 | 54.12 | 11.33 | 13.40 |  |
| 칠            | C26 <sup>H</sup> 60 <sup>N</sup> 4 <sup>Si</sup> 3               | 513.1 | 60.87  | 11.79 | 10.92 | 59.73 | 11.46 | 11.15 |  |
| ≨e           | C <sub>38</sub> H <sub>36</sub> N <sub>4</sub> Si <sub>3</sub>   | 633,0 | 72.10  | 5.73  | 8.85  | 69.48 | 5.96  | 8.91  |  |
| 5¥           | C14 <sup>H</sup> 36 <sup>N</sup> 4 <sup>Si</sup> 3               | 344.6 | 48.78  | 10.53 | 16.25 | 48.12 | 10.23 | 16.36 |  |
| <u>5</u> 1   | C <sub>17</sub> H <sub>42</sub> N4 <sup>Si</sup> 3               | 386.8 | 52.79  | 10.94 | 14.48 | 51.61 | 10.06 | 13,85 |  |
| ទ្ទឆ្ន       | C <sub>17</sub> H <sub>42</sub> N4 <sup>Si</sup> 3               | 386.8 | 52.79  | 10.94 | 14.48 | 52.17 | 10.64 | 14.81 |  |
| ≦n           | C <sub>23</sub> H <sub>54</sub> N <sub>4</sub> Si <sub>3</sub>   | 471.0 | 58.65  | 11.55 | 11.90 | 59.31 | 11.94 | 11.80 |  |
| ۻ            | C8 <sup>H</sup> 24 <sup>GeN</sup> 4 <sup>Si</sup> 2              | 305.1 | 31.49  | 7.93  | 18.36 | 31.24 | 7.93  | 17,95 |  |
| ≦눹           | C14 <sup>H</sup> 36 <sup>GeN</sup> 4 <sup>Si</sup> 2             | 388.9 | 43.24  | 9.39  | 14.39 | 42.72 | 11.48 | 13.67 |  |
| §₽           | C <sub>20</sub> H <sub>48</sub> GeN <sub>4</sub> Si <sub>2</sub> | 473.4 | 50.74  | 10.23 | 11.83 | 49.38 | 10.06 | 12.07 |  |
| <b>6</b> ₫   | $C_{26}H_{60}GeN_4Si_2$                                          | 557.6 | 56.01  | 10.58 | 10.05 | 53.96 | 10.41 | 9.32  |  |
| €₽           | $C_{38}H_{36}Gen_4Si_2$                                          | 677.5 | 67.37  | 5.36  | 8.32  | 65.33 | 5.36  | 8,11  |  |
| ₫₫           | C <sub>18</sub> H <sub>54</sub> GeN6 <sup>Si</sup> 6             | 595.8 | 36.29  | 9.14  | 14.12 | 36.24 | 9.11  | 13.22 |  |
| ₫g           | C <sub>9</sub> H <sub>24</sub> GeN <sub>4</sub> Si               | 289.0 | 37.40  | 8.31  | 11.16 | 36.67 | 7.65  | 11.05 |  |
| ₿'n          | $C_{12}H_{30}GeN_4Si$                                            | 331.1 | 43.53  | 9.13  | 16.92 | 44.62 | 10.22 | 16.88 |  |
| §ķ           | $C_{14}H_{39}Ge_{2}N_{5}Si_{2}$                                  | 478.8 | 35.12  | 8.20  | 14.63 | 34.25 | 8.31  | 13.24 |  |
| 12b          | C <sub>14</sub> H <sub>36</sub> N <sub>4</sub> Si <sub>3</sub>   | 344.7 | 48.78  | 10.53 | 16.25 | 48.80 | 11.45 | 17.94 |  |
| lĩ₫          | C28 <sup>H</sup> 66 <sup>N</sup> 2 <sup>Si</sup> 4               | 543.2 | 61.91  | 12.95 | 5.16  | 60.84 | 12.31 | 5.93  |  |
| l₽ç          | C14H33NOSi2                                                      | 287.6 | .58.47 | 11.56 | 4.87  | 58.59 | 11.30 | 5.09  |  |
| 18₫          | C <sub>17</sub> H <sub>39</sub> NOSi <sub>2</sub>                | 329.7 | 61,93  | 11.92 | 4.25  | 60.94 | 11.55 | 4.44  |  |
| 20a          | $C_{21}H_{34}GeN_2Si_2$                                          | 443.3 | 56.90  | 7.74  | 6.32  | 54.49 | 7.04  | 6.43  |  |
| 2 <b>0</b> ₽ | $C_{24}H_{40}GeN_2Si_2$                                          | 485.4 | 59.38  | 8.31  | 5.77  | 58.06 | 7.85  | 5.71  |  |
| 20 f         | C26 <sup>H</sup> 49 <sup>GeN</sup> 3 <sup>Si</sup> 4             | 588.7 | 53.03  | 8.40  | 7.14  | 59.70 | 8.19  | 7.04  |  |

butylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5d, 64%) bzw. 5,5-Dimethyl-1,4-bis(triphenylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5e, 69%) bei -78 °C aus. – Charakterisierung, Analysen: Tab. 1, 2. – Anmerkung: Beim Erwärmen einer benzolischen Lösung von 10b in Anwesenheit von tBu<sub>3</sub>SiN<sub>3</sub> auf 60 °C bildet sich 6d in quantitativer Ausbeute (Charakterisierung: vgl. oben, Verfahren I).

Darstellung von 5l, 5n (Verfahren III): 1.0 mmol 5d und 1.5 mmol Me<sub>3</sub>SiN<sub>3</sub> (A) bzw.  $tBu_2MeSiN_3$  (B) in 10 ml C<sub>6</sub>H<sub>6</sub> werden in evakuierten, abgeschlossenen Bombenrohren 1 h auf 100°C erhitzt. Laut <sup>1</sup>H-NMR quantitative Umsetzung zu 5l (A) bzw. 5n (B) neben  $tBu_3SiN_3$ . Nach Entfernen von Solvens und Azid bis 40°C/ Ölpumpenvak. liefert die Umkristallisation des Rückstandes aus Et<sub>2</sub>O bei -78°C im Falle von (A) 5,5-Dimethyl-1-(tri-tert-butylsilyl)-4-(trimethylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (51, 60%), im Falle von (B) 1-(Di-tert-butylmethylsilyl)-5,5-dimethyl-4-(tri-tert-butylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5n, 60%). – Charakterisierung, Analysen: Tab. 1, 2.

Darstellung von 5g-k, m (Verfahren IV): Man erwärmt eine auf  $-40^{\circ}$ C gekühlte Lösung von 4.0 mmol 3 und 4.0 mmol R'N<sub>3</sub> [R/ R' = SiMe<sub>3</sub>/tBu (A) bzw. SiPh<sub>3</sub>/tBu (B) bzw. SiMe<sub>2</sub>tBu/SiMe<sub>3</sub> (C) bzw. SiMetBu<sub>2</sub>/SiMe<sub>3</sub> (D) bzw. SiMetBu<sub>2</sub>/SiMe<sub>2</sub>tBu (E)] in 20 ml Et<sub>2</sub>O auf Raumtemp. (Herstellung von 3 in Et<sub>2</sub>O gemäß Lit.<sup>2)</sup> durch Zugabe von BuLi/Hexan zu Me<sub>2</sub>SiBr – CBr(SiMe<sub>3</sub>)<sub>2</sub>/RN<sub>3</sub> in Et<sub>2</sub>O bei  $-78^{\circ}$ C). Laut <sup>1</sup>H-NMR bilden sich (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub><sup>28)</sup> sowie zusätzlich im Falle (A) 50% 5g neben 50% [(Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>Si]-(Me<sub>3</sub>Si)CN<sub>2</sub><sup>21</sup> bzw. im Falle (C) 25% 5i neben 45% [(tBuMe<sub>2</sub>Si)(Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)NMe<sub>2</sub>Si] (Me<sub>3</sub>Si)NMe<sub>2</sub>SiN<sub>3</sub> bzw. im Falle (D) 100% 5i bzw. im Falle (E) 100% 5m. Man destilliert das Solvens und (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub> bis 40°C/ Ölpumpenvak. ab, nimmt die Rückstände in 20 ml Pentan auf und filtriert unlösliches LiBr ab. Ansatz (A): Umkristallisation des durch fraktionierende Destillation der Pentanlösung bei 40°C im Hochvak. erhaltenen Produkts aus Et<sub>2</sub>O bei -78°C liefert 1-tert-Butyl-5,5-dimethyl-4-(trimethylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5g, 7%), Charakterisierung: Tab. 1. – Ansatz (B): Aus der Pentanlösung kristallisiert bei -78°C als 2. Fraktion 5h im Gemisch mit [(Me<sub>3</sub>Si)(Ph<sub>3</sub>Si)NMe<sub>2</sub>Si](Me<sub>3</sub>Si)CN<sub>2</sub><sup>2)</sup> (Molverhältnis ca. 1:1). Charakterisierung von 5h: Tab. 1. - Ansatz (C): Fraktionierende Destillation der Pentanlösung liefert bei 60°C im Hoch-1-(tert-Butyldimethylsilyl)-5,5-dimethyl-4-(trimethylsilyl)vak. 1,2,3,4-tetraaza-5-sila-2-cyclopenten (5i) im Gemisch mit (tBuMe<sub>2</sub>Si)(Me<sub>3</sub>Si)NMe<sub>2</sub>SiN<sub>3</sub> (Molverhältnis ca. 1:1). Charakterisierung von 5i: Tab. 1; Charakterisierung des Azids vgl. Thermolyse von 5i, unten. – Ansätze (D, E): Aus den Pentanlösungen kristallisieren bei - 78 °C im Falle von (D) 1-(Di-tert-butylmethylsilyl)-5,5-dimethyl-4-(trimethylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5k, 78%), im Falle von (E) 1-(tert-Butyldimethylsilyl)-4-(di-tert-butylmethylsilyl)-5,5-dimethyl-1,2,3,4-tetraaza-5-sila-2-cyclopenten (5m, 72%). Charakterisierung, Analysen: Tab. 1, 2. -Anmerkungen: 1) Beim Erwärmen einer auf -40°C gekühlten Lösung von 3 ( $\mathbf{R} = \text{SiMe}_2 t \text{Bu}$  bzw. SiMe $t \text{Bu}_2$ ) und  $t \text{Bu}_3 \text{SiN}_3$  in Et<sub>2</sub>O auf Raumtemp, bilden sich ausschließlich die Thermolyseprodukte von 3 (vgl. Lit.<sup>2)</sup>). -2) Beim Erwärmen einer auf -40 °C gekühlten Lösung von 3 ( $\mathbf{R} = \text{SiMe}_2 t \text{Bu}$ ) und  $t \text{Bu}_2 \text{MeSiN}_3$  in Et<sub>2</sub>O auf Raumtemp. bilden sich 45% [( $tBuMe_2Si$ )(Me\_3Si)NMe\_2Si](Me\_3Si)CN<sub>2</sub><sup>2</sup> sowie 15%  $[-Me_2Si - NSiMe_2tBu - ]_2$  und 40% 5m neben 55% (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub>.

Darstellung von 6a (Verfahren IV): Die Thermolyse von 1.0 mmol 4 ( $R = SiMe_3$ ) und 1.6 mmol Me<sub>3</sub>SiN<sub>3</sub> in 1.5 ml Benzol führt bei 70°C nach 2 h - laut <sup>1</sup>H-NMR - unter quantitativer [2+3]-Cycloreversion von 4 (R = SiMe<sub>3</sub>) zu (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub><sup>28)</sup> und Folgeprodukten des Germanimins Me2Ge=NSiMe3, nämlich ca. 30% des erwünschten Cycloaddukts 6a, ca. 50% Insertionsprodukte 15 (n = 1, löslich, <5%; n = groß, unlöslich)<sup>2</sup> des Germanimins in die RN-Bindung von 4 ( $R = SiMe_3$ ) sowie ca. 20% Insertionsprodukte 13 (7%) und 16 (13%) des Germanimins in die SiN-Bindung von Me<sub>3</sub>SiN<sub>3</sub> (Charakterisierung: vgl. Thermolyse von 6a). Die fraktionierende Destillation des Reaktionsgemischs [Vorlauf: Solvens, (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub>, Me<sub>3</sub>SiN<sub>3</sub>, (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>GeN<sub>3</sub>] liefert bei 50°C im Hochvak. 5,5-Dimethyl-1,4-bis(trimethylsilyl)-1,2,3,4-tetraaza-5-germa-2-cyclopenten (6a). Umkristallisation aus Pentan bei - 78 °C. Charakterisierung, Analysen: Tab. 1, 2. - Anmerkung: Die Thermolyse von 1.0 mmol 4 ( $R = SiMe_3$ ) und 2.3 mmol Me<sub>3</sub>SiN<sub>3</sub> in 1.5 ml Tetrahydrofuran führt bei 70°C nach 2 h -laut <sup>1</sup>H-NMR – zu den gleichen Produkten wie die Thermolyse von 4  $(\mathbf{R} = \mathrm{SiMe}_3)$  in Tetrahydrofuran ohne Me<sub>3</sub>SiN<sub>3</sub> (vgl. Lit.<sup>2</sup>).

Darstellung von **6b**, **6c**, **6e**-**k** (Verfahren IV): Man erwärmt eine Lösung von 1.0 mmol **4** (Darstellung Lit.<sup>2)</sup>) und 2.0 mmol R'N<sub>3</sub> [R/ R' = SiMe<sub>2</sub>tBu/SiMe<sub>2</sub>tBu (A) bzw. SiMetBu<sub>2</sub>/SiMetBu<sub>2</sub> (B) bzw. SiPh<sub>3</sub>/SiPh<sub>3</sub> (C) bzw. SiMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>/SiMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub> (D) bzw. SiMe<sub>3</sub>/tBu (E) bzw. SiMe<sub>2</sub>tBu/tBu (F) bzw. SiMetBu<sub>2</sub>/tBu (G) bzw. GeMe<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>/tBu (H)] in 1.5 ml Benzol 2 h auf 30 °C (C), 50 °C (D), 70 °C (A, B, E, F, G) bzw. 85 °C (H). Laut <sup>1</sup>H-NMR quantitative Umsetzung zu (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub><sup>28)</sup> und **6b**, **6c**, **6e**-**k**. Man destilliert das Solvens, überschüssiges Azid sowie gebildetes (Me<sub>3</sub>Si)<sub>2</sub>CN<sub>2</sub> bis 40 °C/Ölpumpenvak. ab und erhält durch Umkristallisation des verbleibenden Rückstandes aus Pentan bei -78 °C 1,4-Bis(tert-butyldimethylsilyl)-5,5-dimethyl-... (**6b**), 1,4-Bis(di-tert-butylmethylsilyl)-5,5-dimethyl-... (**6c**), 5,5-Dimethyl-1,4-bis(triphenylsilyl)-.... (**6e**), 1,4-Bis{[bis(trimethylsilyl]amino]dimethylsilyl}-5,5-dimethyl-... (6f), 1-tert-Butyl-5,5-dimethyl-4-(trimethylsilyl)-... (6g), 1-tert-Butyl-4-(tert-butyldimethylsilyl)-5,5-dimethyl-... (6h), 1-tert-Butyl-4-(di-tert-butylmethylsilyl)-5,5-dimethyl-... (6i),  $1-\{[Bis(trimethyl-silyl)amino]dimethylgermyl\}$ -4-tert-butyl-5,5-dimethyl-... (6k)-1,2,3,4-tetraaza-5-germa-2-cyclopenten. Charakterisierung, Analysen: Tab. 1, 2.

Thermolysen von 5a-d, i, m: Man thermolysiert in abgeschlossenen, evakuierten Bombenrohren benzolische Lösung von 5a 3 h bei 180°C (A) bzw. von 5b 16 h bei 165°C (B) bzw. von 5c 5 d bei 210°C (C) bzw. von 5d 25 h bei 140°C (D) bzw. von 5i 16 h bei 170°C (E) bzw. von 5m 6 h bei 150°C (F) (jeweils 1.0 mmol 5, 2 ml C<sub>6</sub>H<sub>6</sub>). Laut <sup>1</sup>H-NMR bilden sich unter vollständiger Thermolyse von 5a-d, i, m im Falle (A) 100% 12a, im Falle (B) 80% 12b sowie 20% 17b neben 20% tBuMe<sub>2</sub>SiN<sub>3</sub><sup>23</sup>, im Falle (C) 70% 17c sowie 30% unbekannte Folgeprodukte von  $Me_2Si = NSiMetBu_2$  (<sup>1</sup>H-NMR-Signale, Et<sub>2</sub>O, bei  $\delta = 0.001, 0.379, 1.04$ ) neben 100% tBu<sub>2</sub>-MeSiN<sub>3</sub>, im Falle (D) 100% 17d neben 100%  $tBu_3SiN_3^{24}$ , im Falle (E) 100% 21, im Falle (F) äquimolare Mengen 5b und 5c (Charakterisierung: Tab. 1). Die fraktionierende Destillation liefert im Falle (A) bei 50-52°C/Hochvak. 12a (92%), im Falle (B) bei 60°C/Hochvak. 12b (Rückstand: 17b), im Falle (E) bei 60°C/Hochvak. 21. Umkristallisation des im Falle (D) nach Abdestillieren von Benzol und tBu<sub>3</sub>SiN<sub>3</sub> bis 60°C/Hochvak. verbleibenden Rückstandes aus Et<sub>2</sub>O führt zu 5d (53%).

Azido[bis(trimethylsilyl)amino]dimethylsilan (12a): Farblose Flüssigkeit, Sdp. 50-52 °C/Hochvak. Identifizierung durch Vergleich mit authentischer Probe<sup>10</sup>. – <sup>1</sup>H-NMR (Et<sub>2</sub>O):  $\delta$  = 0.253 (s, 2 SiMe<sub>3</sub>), 0.366 (s, SiMe<sub>2</sub>). – (C<sub>6</sub>H<sub>6</sub>):  $\delta$  = 0.184 (s, 2 SiMe<sub>3</sub>), 0.233 (s, SiMe<sub>2</sub>). – IR (Film): 2142 cm<sup>-1</sup> (v<sub>as</sub>N<sub>3</sub>).

Azido[bis(tert-butyldimethylsilyl)amino]dimethylsilan (12b): Farblose Flüssigkeit, Sdp. 60 °C/Hochvak. – <sup>1</sup>H-NMR (Et<sub>2</sub>O):  $\delta = 0.303$  (s, 2 SiMe<sub>2</sub>tBu), 0.493 (s, SiMe<sub>2</sub>), 1.03 (s, 2 tBu). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.209$  (s, 2 SiMe<sub>2</sub>tBu), 0.326 (s, SiMe<sub>2</sub>), 0.941 (s, 2 tBu). – IR (Film): 2140 cm<sup>-1</sup> (v<sub>as</sub>N<sub>3</sub>). – Analysen: Tab. 2.

Azido[(tert-butyldimethylsilyl)(trimethylsilyl)amino]dimethylsilan (21): Farbloses Öl, Sdp. 60°C/Hochvak. – <sup>1</sup>H-NMR (Et<sub>2</sub>O):  $\delta = 0.252$  (s, SiMe<sub>3</sub>), 0.288 (s, SiMe<sub>2</sub>tBu), 0.428 (s, SiMe<sub>2</sub>), 0.959 (s, tBu). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.173$  (s, SiMe<sub>2</sub>tBu), 0.211 (s, SiMe<sub>3</sub>), 0.268 (s, SiMe<sub>2</sub>), 0.906 (s, tBu). – IR (Film): 2142 cm<sup>-1</sup> (v<sub>as</sub>N<sub>3</sub>).

1,3-Bis(tert-butyldimethylsilyl)-... (17b) und 1,3-Bis(di-tert-butylmethylsilyl)-... (17c)-2,2,4,4-tetramethyl-1,3-diaza-2,4-disilacyclobutan: Identifizierung durch Vergleich mit authentischen Proben<sup>2</sup>.

2.2,4,4-Tetramethyl-1,3-bis(tri-tert-butylsilyl)-1,3-diaza-2,4-disilacyclobutan (17d): Farblose Kristalle, Schmp. 268 °C. – <sup>1</sup>H-NMR (Et<sub>2</sub>O):  $\delta = 0.773$  (s, 2 SiMe<sub>2</sub>), 1.22 (s, 6 tBu). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.787$ (s, 2 SiMe<sub>2</sub>), 1.23 (s, 6 tBu). – Analysen: Tab. 2.

Thermolysen von 5a - d, k - n in Anwesenheit von Aceton: Man thermolysiert in evakuierten, abgeschlossenen Bombenrohren benzolische, Me<sub>2</sub>CO-haltige Lösungen von 5a 3 h bei 180°C (A) bzw. von 5b 3 h bei 150°C (B) bzw. von 5c 3 h bei 150°C (C) bzw. von 5d 1.5 h bei 100°C (D) bzw. von 5k 4 h bei 150°C (E) bzw. von 5l15 h bei 140°C (F) bzw. von 5m 4 h bei 150°C (G) bzw. von 5n5 h bei 130°C (H) (jeweils 1.0 mmol 5, 2.0 mmol Me<sub>2</sub>CO, 2 ml C<sub>6</sub>H<sub>6</sub>). Laut <sup>1</sup>H-NMR bilden sich unter vollständiger Thermolyse von 5a - d, k - n im Falle (A) 100% 12a, im Falle (B) 100% 19b neben 100%  $tBuMe_2SiN_3^{23}$ , im Falle (C) 100% 19c neben 100%  $tBu_2MeSiN_3^{6}$ , im Falle (D) 100% 19d neben 100%  $tBu_3SiN_3^{24}$ , im Falle (E) 77% 19c neben 77% Me\_3SiN\_3^{22} sowie 23% einer nicht identifizierten Substanz (<sup>1</sup>H-NMR (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.010, 0.194$ ) neben 23%  $tBu_2MeSiN_3^{6}$ , im Falle (F) 100% 19d neben 100% Me\_3SiN\_3^{22}. im Falle (G) 49% 19b neben 49%  $tBu_2MeSiN_3^{61}$  sowie 51% 19c neben 51%  $tBuMe_2SiN_3^{23}$ , im Falle (H) 100% 19d neben 100%  $tBu_2MeSiN_3^{61}$ . Die fraktionierende Destillation liefert im Falle (B) bei 35°C/Ölpumpenvak. 19b im Gemisch mit  $tBuMe_2SiN_3$  (Molverhältnis 3:1), im Falle (C) bei 65°C/Ölpumpenvak. 19c, im Falle (D) bei 80°C/Ölpumpenvak. 19d [Identifizierung der Produkte der Ansätze (A), (E), (F), (G), (H) durch Vergleich mit authentischen Proben, s. vorstehende bzw. diese Versuche].

(tert-Butyldimethylsilyl) [(isopropenyloxy)dimethylsilyl]amin (19b): Farblose Flüssigkeit. – <sup>1</sup>H-NMR (C<sub>6</sub>H<sub>6</sub>):  $\delta$  = 0.084 (s, SiMe<sub>2</sub>O), 0.193 (s, SiMe<sub>2</sub>), 0.873 (s, tBu), 1.74 (m, Me), 4.11 (m, = CH<sub>2</sub>). – IR (Film): 3380 cm<sup>-1</sup> (vNH).

(*Di-tert-butylmethylsilyl*) [ (isopropenyloxy) dimethylsilyl ] amin (**19c**): Farblose Flüssigkeit, Sdp. 65 °C/Ölpumpenvak. – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.052$  (s, SiMe), 0.190 (s, SiMe<sub>2</sub>), 0.931 (s, 2 tBu), 1.74 (m, Me), 4.02 (m, =CH<sub>2</sub>). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.083$  (s, SiMe), 0.210 (s, SiMe<sub>2</sub>), 0.966 (s, 2 tBu), 1.72 (m, Me), 4.40 (m, =CH<sub>2</sub>). – <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta = -7.28$  (SiMe), 1.11 (SiMe<sub>2</sub>), 20.2 (CMe<sub>3</sub>), 22.9 (Me), 28.0 (CMe<sub>3</sub>), 90.9 (=CH<sub>2</sub>), 156 (=C $\langle$ ). – IR (Film): 3375 cm<sup>-1</sup> (vNH). – Analysen: Tab. 2.

[(Isopropenyloxy)dimethylsilyl](tri-tert-butylsilyl)amin (19d): Farblose Flüssigkeit, Sdp. 80°C/Ölpumpenvak. – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.274$  (s, SiMe<sub>2</sub>), 1.10 (s, 3 tBu), 1.76 (m, Me), 4.06 (m, =CH<sub>2</sub>). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.296$  (s, SiMe<sub>2</sub>), 1.13 (s, 3 tBu), 1.73 (m, Me), 4.12 (m, =CH<sub>2</sub>). – <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta = 1.89$  (SiMe<sub>2</sub>), 22.7 (CMe<sub>3</sub>), 22.9 (Me), 30.3 (CMe<sub>3</sub>), 91.1 (=CH<sub>2</sub>), 156 (=C<sup>'</sup>). – IR (Film): 3340 cm<sup>-1</sup> (vNH). – Analysen: Tab. 2.

Thermolyse von 5k in Anwesenheit von Trimethylsilylazid: Die Thermolyse von 1.0 mmol 5k in 2 ml  $C_6H_6$  in Anwesenheit von 5.0 mmol Me<sub>3</sub>SiN<sub>3</sub> bei 140 °C liefert nach 8 h - laut <sup>1</sup>H-NMR -100% (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> (12a, Charakterisierung: vgl. Thermolyse von 5a) neben 100% tBu<sub>2</sub>MeSiN<sub>3</sub><sup>6</sup>.

Thermolysen von 6a - d, f: Man thermolysiert in abgeschlossenen, evakuierten Bombenrohren benzolische Lösungen von 6a 2 h bei 120°C (A) bzw. von 6b 3 d bei 120°C (B) bzw. von 6c 3 d bei 140°C (C) bzw. von 6d 6 d bei 180 °C (D) bzw. von 6f 2 h bei 120 °C (E) (jeweils 1.0 mmol 6, 2 ml C<sub>6</sub>H<sub>6</sub>). Laut <sup>1</sup>H-NMR bilden sich unter vollständiger Thermolyse von 6a-d, f im Falle (A) 27% 13a, 13% 16 sowie 60% 18a neben 60% Me<sub>3</sub>SiN<sub>3</sub><sup>22)</sup>, im Falle (B) 100% 18b neben 100% tBuMe<sub>2</sub>SiN<sub>3</sub><sup>23</sup>, im Falle (C) 100% 18c neben 100% tBu<sub>2</sub>MeSiN<sub>3</sub><sup>6</sup>, im Falle (D) 40% 18d und 60% einer nicht identifizierten Substanz [<sup>1</sup>H-NMR-Signale (Et<sub>2</sub>O) bei  $\delta = 0.638, 0.896,$ 1.21] neben 100% tBu<sub>3</sub>SiN<sub>3</sub><sup>24</sup>, im Falle (E) 100% 18f neben 100% (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> (Charakterisierung: vgl. Thermolyse von 5a). Die fraktionierende Hochvakuumdestillation liefert im Falle (A) bis 50°C Solvens, Me<sub>3</sub>SiN<sub>3</sub> sowie 13a, bei 50°C 18a und bei 90°C 16, im Falle (D) bis 100°C Solvens, tBu<sub>3</sub>SiN<sub>3</sub> sowie eine unbekannte Substanz (s. oben), bei 120°C 18d. Im Falle der Ansätze (B), (C) bzw. (E) verbleibt nach Entfernen von Solvens und tBuMe<sub>2</sub>SiN<sub>3</sub>, tBu<sub>2</sub>MeSiN<sub>3</sub> bzw. (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> bei Raumtemp. im Hochvak. 18b, 18c bzw. 18f.

Azido[bis(trimethylsilyl)amino]dimethylgerman (13a): Farblose Flüssigkeit, Identifizierung durch Vergleich mit authentischer Probe<sup>22)</sup>. – <sup>1</sup>H-NMR (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.168$  (s, 2 SiMe<sub>3</sub>), 0.431 (s, GeMe<sub>2</sub>).

Azido {{[bis(trimethylsilyl)amino]dimethylgermyl}}(trimethylsilyl)amino}dimethylgerman (16): Farbloses Öl, Sdp. 90°C/Hochvakuum. – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.090$  [s, N(SiMe<sub>3</sub>)<sub>2</sub>], 0.114 (s, SiMe<sub>3</sub>), 0.542 (s, GeMe<sub>2</sub>), 0.646 (s, GeMe<sub>2</sub>N<sub>3</sub>). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.228$  [s, N(SiMe<sub>3</sub>)<sub>2</sub>], 0.250 (s, SiMe<sub>3</sub>), 0.534 (s, GeMe<sub>2</sub>), 0.594 (s, Ge-Me<sub>2</sub>N<sub>3</sub>). – IR (Film): 2100 cm<sup>-1</sup> (v<sub>as</sub>N<sub>3</sub>). 1,3-Bis(trimethylsilyl)-... (18a), 1,3-Bis(tert-butyldimethylsilyl)-... (18b), 1,3-Bis(di-tert-butylmethylsilyl)-... (18c), 1,3-Bis{[bis(trimethylsilyl)amino]dimethylsilyl}-... (18f)-2,2,4,4-tetramethyl-1,3diaza-2,4-digermacyclobutan: Identifizierung durch Vergleich mit authentischen Proben<sup>2</sup>).

2,2,4,4-Tetramethyl-1,3-bis(tri-tert-butylsilyl)-1,3-diaza-2,4-digermacyclobutan (18d): Farblose Kristalle, Schmp. 165°C. – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.950$  (s, 2 GeMe<sub>2</sub>), 1.13 (s, 6 tBu). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.984$  (s, 2 GeMe<sub>2</sub>), 1.20 (s, 6 tBu).

Thermolysen von 6a-c, f in Anwesenheit von N-(Trimethylsilyl)benzophenonimin: Man thermolysiert in evakuierten, abgeschlossenen Bombenrohren benzolische,  $Ph_2C = NSiMe_3$ -haltige Lösungen von 6a 2 h bei 120 °C (A) bzw. von 6b 2 h bei 130 °C (B) bzw. von 6c 2 h bei 130°C (C) bzw. von 6f 2 h bei 110°C (D) (jeweils 1.0 mmol 6, 3.0 mmol  $Ph_2C = NSiMe_3$ , 2 ml  $C_6H_6$ ). Laut <sup>1</sup>H-NMR bilden sich unter vollständiger Thermolyse von 6a-c, f im Falle (A) 100% 20a neben 100% Me<sub>3</sub>SiN<sub>3</sub><sup>22</sup>, im Falle (B) 100% 20b neben 100% tBuMe<sub>2</sub>SiN<sub>3</sub><sup>23</sup>, im Falle (C) 100% 20c neben 100% tBu<sub>2</sub>- $MeSiN_3^{6}$ , im Falle (D) 100% **20f** neben 100% (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> (Charakterisierung: vgl. Thermolyse von 5a). Die fraktionierende Hochvakuumdestillation liefert im Falle der Ansätze (A) bzw. (B) bzw. (C) bei 90°C 20a bzw. bei 110°C 20b bzw. bei 140°C 20c (jeweils Umkristallisation aus Pentan bei  $-78^{\circ}$ C); im Falle des Ansatzes (D) verbleibt 20f nach Abdestillation von Solvens, überschüssigem  $Ph_2C = NSiMe_3$  sowie gebildetem (Me\_3Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub> bis 50°C/Hochvakuum.

N-{[Bis(trimethylsilyl) amino]dimethylgermyl]benzophenonimin (20a): Blaßgelbe Kristalle, Schmp. 45 °C. – <sup>1</sup>H-NMR (Et<sub>2</sub>O): δ = 0.000 (s, GeMe<sub>2</sub>), 0.198 (s, 2 SiMe<sub>3</sub>), 7.00 (m, Ph). – (C<sub>6</sub>H<sub>6</sub>): δ = 0.247 (s, GeMe<sub>2</sub>), 0.349 (s, 2 SiMe<sub>3</sub>), verdeckt (2 Ph). – UV (Cyclohexan):  $\lambda$  (ε) = 249 nm (40200). – Analysen: Tab. 2.

 $N - \{ [ (tert-Butyldimethylsilyl) (trimethylsilyl) amino] dimethylger$  $myl \} benzophenonimin (20b): Blaßgelbe Kristalle, Schmp. 120 °C. –$  $<sup>1</sup>H-NMR (Et<sub>2</sub>O): <math>\delta = 0.189$  (s, GeMe<sub>2</sub>), 0.222 (s, SiMe<sub>2</sub>), 0.262 (s, SiMe<sub>3</sub>), verdeckt (tBu), 7.00 (m, 2 Ph). – (C<sub>6</sub>H<sub>6</sub>):  $\delta = 0.269$  (s, GeMe<sub>2</sub>), 0.290 (s, SiMe<sub>2</sub>), 0.429 (s, SiMe<sub>3</sub>), 1.10 (s, tBu), verdeckt (2 Ph). – UV (Cyclohexan):  $\lambda (\epsilon) = 249$  (40200). – Analysen: Tab. 2.

*N*-{[(*Di-tert-butylmethylsilyl*)(trimethylsilyl)amino]dimethylgermyl}benzophenonimin (**20**c): Blaßgelbe Kristalle, Schmp. 140 °C. – <sup>1</sup>H-NMR (Et<sub>2</sub>O):  $\delta$  = 0.253 (s, GeMe<sub>2</sub>), 0.332 (s, SiMe), 0.387 (s, SiMe<sub>3</sub>), verdeckt (2 tBu), 7.00 (m, 2 Ph). – (C<sub>6</sub>H<sub>6</sub>):  $\delta$  = 0.288 (s, GeMe<sub>2</sub>), 0.391 (s, SiMe), 0.510 (s, SiMe<sub>3</sub>), 1.18 (s, 2 tBu), verdeckt (2 Ph). – UV (Cyclohexan):  $\lambda$  (ε) = 249 nm (40200).

<sup>\*</sup> N-{{{[Bis(trimethylsilyl)amino]dimethylsilyl}(trimethylsilyl)amino}dimethylgermyl}benzophenonimin (**20**f): Gelbes Öl. – <sup>1</sup>H-NMR (Et<sub>2</sub>O): δ = 0.243 (s, GeMe<sub>2</sub>), 0.267 [s, N(SiMe<sub>3</sub>)<sub>2</sub>], 0.389 (s, SiMe<sub>3</sub>), 0.393 (s, SiMe<sub>2</sub>), 7.00 (m, 2 Ph). – (C<sub>6</sub>H<sub>6</sub>): δ = 0.296 (s, GeMe<sub>2</sub>), 0.371 [s, N(SiMe<sub>3</sub>)<sub>2</sub>], 0.461 (s, SiMe<sub>3</sub>), 0.512 (s, SiMe<sub>2</sub>), verdeckt (2 Ph). – UV (Cyclohexan): λ (ε) = 251 nm (39800). – Analysen: Tab. 2.

Thermolysen von 5g, h sowie 6g, h, k: Man thermolysiert in abgeschlossenen, evakuierten Bombenrohren benzolische Lösungen von 5g 18 h bei 180 °C (A) bzw. von 5h 3 h bei 180 °C (B) bzw. von 6g 3 h bei 80 °C (C) bzw. von 6h 12 h bei 130 °C (D) bzw. von 6k 12 h bei 150 °C (E) (jeweils 1.0 mmol 5 bzw. 6, 2 ml C<sub>6</sub>H<sub>6</sub>). Laut <sup>1</sup>H-NMR bilden sich unter vollständiger Thermolyse von 5g, 5h, 6g, 6h bzw. 6k neben unbekannten Produkten im Falle (A) möglicherweise (Me<sub>3</sub>Si)*t*BuNMe<sub>2</sub>SiN<sub>3</sub> [<sup>1</sup>H-NMR-Signale (C<sub>6</sub>H<sub>6</sub>) bei  $\delta = 0.124, 0.151$  und 0.951 im Flächenverhältnis 3:2:3; IR (Film): 2140 cm<sup>-1</sup> (v<sub>as</sub>N<sub>3</sub>)], im Falle (B) möglicherweise (Ph<sub>3</sub>Si)tBuNMe<sub>2</sub>-SiN<sub>3</sub> [<sup>1</sup>H-NMR-Signale (C<sub>6</sub>H<sub>6</sub>) bei 0.013 und 0.928 im Flächenverhältnis 2:3; IR (Film): 2138 cm<sup>-1</sup> (v<sub>as</sub>N<sub>3</sub>)], im Falle (C) etwas **5k** (vgl. Tab. 1) neben viel Me<sub>3</sub>SiN<sub>3</sub><sup>22)</sup>, im Falle (D) viel Germanimin-Dimeres  $[-Me_2Ge-NSiMe_2tBu-]_2^{2}$  neben  $tBuN_3^{26}$ , im Falle (E) u. a.  $tBuN_3^{26}$ .

Kinetiken der Zerfälle von 5a-d, 6a-c, f. Man thermolysiert in evakuierten, abgeschlossenen NMR-Rohren Lösungen von 5a-dund Aceton in Diethylether bzw. von 6a-c, f und N-(Trimethylsilyl)benzophenonimin in Benzol (jeweils 0.2 M; Molverhältnis 5, 6 zu Fängern = 1:3) bei den in Tab. 1 angegebenen Temperaturen. Die zeitliche Abnahme der Menge an 5, 6 bzw. zeitliche Zunahme der Menge an Azid wird <sup>1</sup>H-NMR-spektroskopisch verfolgt. Geschwindigkeitskonstanten, Halbwertszeiten: Tab. 1. – Anmerkungen: 1) Die Thermolysen von 5a sowie 6a erfolgen in An- und Abwesenheit von Fängern für die Silan- und Germanimine mit gleicher Geschwindigkeit. – 2) Die Thermolysen von 5b-d, 6b-c, f verzögern sich in Abwesenheit von Fängern für die Silanund Germanimine beträchtlich (z. B. Thermolyse von 6b in  $C_6H_6$ bei 120°C nach 1, 5, 15 h: 22, 48, 59% Umsatz).

#### CAS-Registry-Nummern

3a: 66239-87-0 / 3b: 108148-59-0 / 3c: 108148-60-3 / 3e: 108148-61-4 / 4a: 103457-94-9 / 4b: 103457-95-0 / 4c: 103457-96-1 / 4e: 108148-65-8 / 4f: 108148-66-9 / 4k (15, n = 1): 108148-67-0 / 5a: 66239-88-1 / 5b: 108148-38-5 / 5c: 108148-39-6 / 5d: 106710-91-2 / 5e: 108148-40-9 / 5f: 108148-41-0 / 5g: 108148-42-1 / 5h: 108148-43-2 / 5i: 108148-44-3 / 5k: 108148-45-4 / 5l: 108148-46-5 / 5m: 108148-47-6 / 5n: 108148-48-7 / 6a: 108148-49-8 / 6b: 108148-50-1 / 6c: 108148-51-2 / 6d: 103458-03-3 / 6e: 108148-52-3 / 6f: 108148-53-4 / 6g: 108148-54-5 / 6h: 108148-55-6 / 6i: 108148-56-7 / 6k: 108167-14-2 / 10a: 80431-36-3 / 10b: 103457-89-2 / 12a: 66239-86-9 / 12b: 108148-70-5 / 13a: 108148-97-6 / 16a: 108148-69-2 / 17b: 108148-64-7 / 17c: 108148-68-1 / 17d: 100207-18-9 / 18a: 108148-74-9 / 18b: 108148-75-0 / 18c: 108148-76-1 / 18d: 108148-77-2 / 18f: 108148-78-3 / 19b: 108148-71-6 / 19c: 108148-72-7 / 19d: 108148-73-8 / 20a: 108148-79-4 / 20b: 108148-**20c**: 108148-81-8 / **20f**: 108148-82-9 / **21**: 108148-63-6 /  $\begin{bmatrix} (rBuMe_2Si)(Me_2Si)NMe_2Si](Me_3Si)CN_2: 108148-578 / \{[(Me_3Si)_2-NMe_2Si](Me_3Si)NMe_2Si\}(Me_3Si)CN_2: 108148-58-9 / Me_2GeBu-CBr(SiMe_3)_2: 103366-80-9 / [(Me_3Si)_2NMe_2Si](Me_3Si)CN_2: 66239-85-8 / [[Ph_3Si](Me_3Si)NMe_2Si](Me_3Si)CN_2: 108148-62-5 / (rBuMe_2Si)(Me_3Si)(Me_3Si)(Ne_2Si)(Me_3Si)CN_2: 108148-62-5 / (rBuMe_2Si)(Me_3Si)(Ne_2Si)(Me_3Si)(Ne_2Si)(Me_3Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si)(Ne_2Si$  $\begin{array}{l} Si(Me_{3}Si)NMe_{2}SiN_{3}: \ 108148-63-6 \ \ / \ \ [-Me_{2}Si-NSiMe_{2}tBu-]_{2}: \\ 108148-64-7 \ \ / \ \ (Me_{3}Si)_{2}CN_{2}: \ \ 30006-66-7 \ \ / \ \ Me_{2}SiBrCBr(SiMe_{3})_{2}: \\ \end{array}$ 62139-74-6 / Me2GeBrCBr(SiMe3)2: 103349-20-8 / tBu2MeSiN3: 103457-88-1 / (Me<sub>3</sub>Si)<sub>2</sub>NMe<sub>2</sub>SiN<sub>3</sub>: 66239-86-9 / tBuMe<sub>2</sub>SiN<sub>3</sub>: 58434-70-1 / tBu<sub>3</sub>SiN<sub>3</sub>: 69322-38-9 / Me<sub>3</sub>SiN<sub>3</sub>: 4648-54-8 / Ph<sub>3</sub>SiN<sub>3</sub>: 5599-34-8 / tBuN3: 13686-33-4

- <sup>2)</sup> N. Wiberg, P. Karampatses, Ch.-K. Kim, *Chem. Ber.* **120** (1987) 1203, vorstehend.
- <sup>3)</sup> N. Wiberg, G. Preiner, P. Karampatses, Ch.-K. Kim, K. Schurz, *Chem. Ber.* **120** (1987), im Druck.
- <sup>49</sup> N. Wiberg, G. Preiner, G. Wagner, H. Köpf, G. Fischer, Z. Naturforsch., Teil B, 42 (1987) Juli/August.
- <sup>5)</sup> N. Wiberg, G. Preiner, G. Wagner, H. Köpf, Z. Naturforsch., Teil B, 42 (1987) Juli/August.
- 6) N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2980.
- <sup>7)</sup> Ein weiteres Darstellungsverfahren besteht in der Umsetzung von Addukten des Typs 7 (Gl. 1) mit R'N<sub>3</sub> (vgl. Lit.<sup>3</sup>).
- <sup>8)</sup> Die Ausbeuten an Siladihydrotetrazolen (erzeugt nach Verfahren IV durch [2 + 3]-Cycloaddition von Me<sub>2</sub>Si = NSitBu<sub>m</sub>Me<sub>3-m</sub> und tBu<sub>n</sub>Me<sub>3-m</sub>SiN<sub>3</sub>) steigen, bezogen auf 3, mit wachsendem m und abnehmendem n, z. B. Me<sub>2</sub>Si = NSitBu<sub>m</sub>Me<sub>3-m</sub> + Me<sub>3</sub>-SiN<sub>3</sub>  $\rightarrow 0\%$  5a (m = 1, n = 0), 45% 5i (m = 2, n = 0), 100% 5k (m = 3, n = 0); Me<sub>2</sub>Si = NSitBuMe<sub>2</sub> + tBu<sub>2</sub>MeSiN<sub>3</sub>  $\rightarrow 75\%$

<sup>&</sup>lt;sup>1)</sup> 22. Mitteilung über ungesättigte Silicium- und Germaniumverbindungen; zugleich 74. Mitteilung über Verbindungen des Siliciums und seiner Gruppenhomologen; 21. bzw. 73. Mitteilung: Lit.<sup>2)</sup>.

**5m** (m = 1, n = 2) bzw. Me<sub>2</sub>Si = NSitBu<sub>2</sub>Me + tBuMe<sub>2</sub>SiN<sub>3</sub>  $\rightarrow$  100% **5m** (m = 2, n = 1); Me<sub>2</sub>Si = NSitBu<sub>m</sub>Me<sub>3-m</sub> + tBu<sub>3</sub>-SiN<sub>3</sub>  $\rightarrow$  0% **5** (m = 1, n = 3), 0% **5n** (m = 2, n = 3), 100% **5d** (m = 3, n = 3).

- <sup>9)</sup> Das Dihydrotetrazol **5a**, welches selbst bei erhöhter Temperatur (100 °C, Verfahren II) nur in bescheidener Ausbeute (ca. 20%) anfällt, ist auch ausgehend vom Silylhydrazid Me<sub>2</sub>Si[N<sub>2</sub>Li-(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub><sup>10</sup> sowie vom Silyltetrazen (Me<sub>3</sub>Si)<sub>3</sub>N<sub>4</sub>SiMe<sub>2</sub>Cl<sup>11</sup> zu-<sup>(1)</sup> N. Wiberg, G. Ziegleder, *Chem. Ber.* 111 (1978) 2123.
   <sup>(1)</sup> N. Wiberg, *Adv. Organomet. Chem.* 24 (1985) 179.
   <sup>(1)</sup> N. Wiberg, *Adv. Organomet.* Chem. 24 (1985) 179.

- <sup>12)</sup> Im Falle der Synthese von **5d**, **6d** nach Verfahren I (Me<sub>2</sub>-EBr CBr(SiMe<sub>3</sub>)<sub>2</sub> + BuLi +  $tBu_3SiN_3$ ) bewirkt die sterisch bedingte Cycloadditionsträgheit von tBu<sub>3</sub>SiN<sub>3</sub> hinsichtlich intermediär gebildetem  $Me_2E = C(SiMe_3)_2$  eine Minderung der Ausbeute, weil nunmehr BuLi sowie  $Me_2E = C(SiMe_3)_2$  mit  $tBu_3SiN_3$ um die Zwischenstufe  $Me_2E = C(SiMe_3)_2$  konkurrieren können (Bildung von  $Me_2EBu - CLi(SiMe_3)_2$ ,  $[-Me_2E - C(SiMe_3)_2 - ]_2$ neben 5d, 6d).
- 13) In Tetrahydrofuran reagiert  $Me_2Ge = NSiMe_3$  bei 70°C nicht mit Me<sub>3</sub>SiN<sub>3</sub>; es bilden sich ausschließlich die Produkte der Eigenzersetzung des Imins in diesem Solvens<sup>2</sup>
- <sup>14)</sup> UV (Cyclohexan):  $\lambda_{max}$  (ɛ) von 5a = 246 nm (5900); 6a = 251 (39800); 6b = 252 (39700); 6c = 255 (39200); 6d = 255 (39200); 6e = 264 (37800); 6f = 253 (39500).
- <sup>15)</sup> Nicht durch Aceton abfangen läßt sich gemäß  $5a \rightarrow 1a +$ Me<sub>3</sub>SiN<sub>3</sub> gebildetes Me<sub>2</sub>Si = NSiMe<sub>3</sub> (1a), da offensichtlich Me<sub>3</sub>SiN<sub>3</sub> mit 1a rascher reagiert als Me<sub>2</sub>C =  $O^{16}$ .
- <sup>16)</sup> Auch das Silaethen Me<sub>2</sub>Si = C(SiMe<sub>3</sub>)<sub>2</sub> setzt sich mit Me<sub>3</sub>SiN<sub>3</sub> rascher als mit Me<sub>2</sub>C = O um<sup>5</sup>.
- <sup>17)</sup> Die Thermolysen von 5a, d bzw. 6a erfolgen auch in Abwesenheit von Fängern nach 1. Reaktionsordnung (gleiche Geschwindigkeitskonstanten in An- und Abwesenheit von Fängern).

- <sup>18)</sup> Wie aus Tab. 1 hervorgeht, wächst die Zersetzlichkeit der Dihydrotetrazole 5 bzw. 6 (ähnlich wie die der Dihydrotriazole 3 bzw. 4, Lit.<sup>2)</sup>) in Richtung  $\mathbf{a} < \mathbf{b} \approx \mathbf{c} < \mathbf{d}$  an. Der Lösungsmitte-
- leinfluß auf die Thermolysegeschwindigkeit ist gering. <sup>19)</sup> Auch die noch nicht eingehend untersuchten Thermolysen von ungleichartig substituierten Sila- und Germadihydrotetrazolen ( $\mathbf{R} = t\mathbf{B}\mathbf{u}, \mathbf{R}' = Silyl$ ) erfolgen möglicherweise sowohl nach Gl. (6a) als auch Gl. (6b). So bildet sich im Falle der Thermolyse von 5 mit  $R/R' = tBu/SiMe_3$  (5g) bzw.  $tBu/SiPh_3$  (5h) u. a. das Insertionsprodukt von  $Me_2Si = NtBu$  in die SiN-Bindung von Me<sub>3</sub>SiN<sub>3</sub> bzw. Ph<sub>3</sub>SiN<sub>3</sub>, im Falle der Thermolyse von 6 mit  $R/R' = tBu/SiMe_3$  (6g) u. a.  $Me_3SiN_3$  sowie das Insertionsprodukt von  $Me_2Ge=NSiMe_3$  in die SiN-Bindung der Me<sub>3</sub>SiN-Gruppe von 5g, im Falle der Thermolyse von 6 mit R/ $= tBu/SiMe_2tBu$  u. a. das Dimere von Me<sub>2</sub>Ge = NSiMe<sub>2</sub>tBu R' neben tBuN<sub>3</sub>.
- 20) N. Wiberg, G. Preiner, O. Schieda, G. Fischer, Chem. Ber. 114 (1981) 3505; N. Wiberg, G. Preiner, O. Schieda, *ibid.* 114 (1981) 2087
- <sup>21)</sup> N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2966.
- <sup>22)</sup> N. Wiberg, B. Neruda, Chem. Ber. 99 (1966) 740.
- <sup>23)</sup> D. R. Parker, L. H. Sommer, J. Am. Chem. Soc. 98 (1976) 618.
  <sup>24)</sup> M. Weidenbruch, H. Pesel, Z. Naturforsch., Teil B, 33 (1978) 1465; P. M. Nowakowski, L. H. Sommer, J. Organomet. Chem. 178 (1979) 95.
- <sup>25)</sup> U. Wannagat, H. Niederprüm, Z. Anorg. Allg. Chem. 308 (1961) 336.
- <sup>26)</sup> L. W. Breed, R. L. Elliot, J. Organomet. Chem. 11 (1968) 447.
- <sup>27)</sup> L. Chan, E. G. Rochow, J. Organomet. Chem. 9 (1966) 231.
- <sup>28)</sup> N. Wiberg, G. Preiner, O. Schieda, Chem. Ber. 114 (1981) 3518.

[39/87]